KEYENCE溫度傳感器工作原理和挑選方法
KEYENCE溫度傳感器工作原理和挑選方法
KEYENCE溫度傳感器金屬在環(huán)境溫度變化后會(huì )產(chǎn)生一個(gè)相應的延伸,因此傳感器可以以不同方式對這種反應進(jìn)行信號轉換。
KEYENCE溫度傳感器兩片不同膨脹系數的金屬貼在一起而組成,隨著(zhù)溫度變化,材料A比另外一種金屬膨脹程度要高,引起金屬片彎曲。彎曲的曲率可以轉換成一個(gè)輸出信號。
雙金屬桿和金屬管傳感器
隨著(zhù)溫度升高,金屬管(材料A)長(cháng)度增加,而不膨脹鋼桿(金屬B)的長(cháng)度并不增加,這樣由于位置的改變,金屬管的線(xiàn)性膨脹就可以進(jìn)行傳遞。反過(guò)來(lái),這種線(xiàn)性膨脹可以轉換成一個(gè)輸出信號。
熱電偶由兩個(gè)不同材料的金屬線(xiàn)組成,在末端焊接在一起。再測出不加熱部位的環(huán)境溫度,就可以準確知道加熱點(diǎn)的溫度。由于它必須有兩種不同材質(zhì)的導體,所以稱(chēng)之為熱電偶。不同材質(zhì)做出的熱電偶使用于不同的溫度范圍,它們的靈敏度也各不相同。熱電偶的靈敏度是指加熱點(diǎn)溫度變化1℃時(shí),輸出電位差的變化量。對于大多數金屬材料支撐的熱電偶而言,這個(gè)數值大約在5~40微伏/℃之間。
由于熱電偶溫度傳感器的靈敏度與材料的粗細無(wú)關(guān),用非常細的材料也能夠做成溫度傳感器。也由于制作熱電偶的金屬材料具有很好的延展性,這種細微的測溫元件有的響應速度,可以測量快速變化的過(guò)程。
如果要進(jìn)行可靠的溫度測量,首先就需要選擇正確的溫度儀表,也就是溫度傳感器。其中熱電偶、熱敏電阻、鉑電阻(RTD)和溫度IC都是測試中的溫度傳感器。
以下是對熱電偶和熱敏電阻兩種溫度儀表的特點(diǎn)介紹。
1、熱電偶
熱電偶是溫度測量中的溫度傳感器。其主要好處是寬溫度范圍和適應各種大氣環(huán)境,而且結實(shí)、價(jià)低,無(wú)需供電,也是的。熱電偶由在一端連接的兩條不同金屬線(xiàn)(金屬A和金屬B)構成,當熱電偶一端受熱時(shí),熱電偶電路中就有電勢差??捎脺y量的電勢差來(lái)計算溫度。
不過(guò),電壓和溫度間是非線(xiàn)性關(guān)系,溫度由于電壓和溫度是非線(xiàn)性關(guān)系,因此需要為參考溫度(Tref)作第二次測量,并利用測試設備軟件或硬件在儀器內部處理電壓-溫度變換,以最終獲得熱偶溫度(Tx)。數據采集器均有內置的測量了運算能力。
簡(jiǎn)而言之,熱電偶是的溫度傳感器,但熱電偶并不適合高精度的的測量和應用。
2、熱敏電阻
熱敏電阻是用半導體材料, 大多為負溫度系數,即阻值隨溫度增加而降低。溫度變化會(huì )造成大的阻值改變,因此它是的溫度傳感器。但熱敏電阻的線(xiàn)性度極差,并且與生產(chǎn)工藝有很大關(guān)系。制造商給不出標準化的熱敏電阻曲線(xiàn)。
熱敏電阻體積非常小,對溫度變化的響應也快。但熱敏電阻需要使用電流源,小尺寸也使它對自熱誤差極為敏感。
熱敏電阻在兩條線(xiàn)上測量的是絕對溫度, 有較好的精度,但它比熱偶貴, 可測溫度范圍也小于熱偶。一種常用熱敏電阻在25℃時(shí)的阻值為5kΩ,每1℃的溫度改變造成KEYENCE溫度傳感器的電阻變化。注意10Ω的引線(xiàn)電阻僅造成可忽略的 0.05℃誤差。它非常適合需要進(jìn)行快速和靈敏溫度測量的電流控制應用。尺寸小對于有空間要求的應用是有利的,但必須注意防止自熱誤差。
KEYENCE溫度傳感器還有其自身的測量技巧。熱敏電阻體積小是優(yōu)點(diǎn),它能很快穩定,不會(huì )造成熱負載。不過(guò)也因此很不結實(shí),大電流會(huì )造成自熱。由于熱敏電阻是一種電阻性器件,任何電流源都會(huì )在其上因功率而造成發(fā)熱。功率等于電流平方與電阻的積。因此要使用小的電流源。如果熱敏電阻暴露在高熱中,將導致性的損壞。
通過(guò)對兩種溫度儀表的介紹,希望對大家工作學(xué)習有所幫助。